

Step Towards and Step Avoiding Actions Page 1 of 7

STEP ACTIONS:
STEP TOWARDS AND STEP AVOIDING

Oftentimes programmers want to create characters that either avoid

other characters or move towards them. Think, for example, of a
game where the objective is to avoid mummies or zombies that are

chasing you. Well, GameMaker has two very useful actions called
Step Towards and Step Avoiding that help you create objects that

both avoid other object or move towards other objects.

THE STEP TOWARDS ACTION

The Step Towards action is an action you would use if you want an object to move in a specific

direction or toward another object. The difference between Step Towards and Move Towards is that
in Step Towards, you can set a parameter for stopping the object when it encounters either solid object

or all objects.

When setting the parameters of the Step Towards action, you need to specify the following:

1. x: This would be the x-position in the room that you would want the object to move
towards.

2. y: This would be the y-position in the room that you would want the object to move

towards.

3. speed: This would be the speed at which you want the object moving as it moves towards the

point specified.

Step Towards and Step Avoiding Actions Page 2 of 7

4. stop at: Here you can specify whether you want the object to stop at solid objects only or all

objects.

STEP TOWARDS A SPECIFIC OBJECT

Of course, it’s possible to have an object step towards an object instead of a specific point in the room.

In order to have an object move towards an object, you would simply need to specify the x- and y-
position of the object you want it to follow.

In the following example, I want the object to step towards an object I have called obj_hero:

Since we would want the object to follow the other object repeatedly, we would need to add this action
in a Step Event. Otherwise, the object will only step towards the other object when an instance of the

object is created.

THE STEP AVOIDING ACTION

The Step Avoiding action is similar to Step Towards, except you can tell the object to avoid solid

objects or all objects.

So just like Step Towards, when setting the parameters for a Step Avoiding action, you need to
specify the location in the room that you want the object to step towards, the speed at which you want it

to move, and whether or not it should avoid solid objects or all objects.

Step Towards and Step Avoiding Actions Page 3 of 7

In the following example, I am telling the object to step towards the bottom-right corner of the room (i.e.
room_width and room_height) and avoid all objects.

Step Towards and Step Avoiding Actions Page 4 of 7

AVOIDING SPECIFIC OBJECTS

Sometimes avoiding solid objects or all instances of objects may not be what you’re after because

perhaps there are certain solid objects or certain instances of objects that you do not want to avoid. In

that case, you can add some code to your Step event and use a function called
mp_potential_step_object that allows you to specify specific objects to avoid. The syntax for the

function is as follows,

mp_potential_step_object(xgoal, ygoal, stepsize, obj)

where xgoal is the target x-position, ygoal is the target y-position, stepsize is the speed the object
moves in pixels per step, and obj is the object that you want to avoid.

So if wanted an object to avoid a specific object (let’s call the object obj_monster), we would add an
Execute Code action (which you can find in the control tab) and write the following line of code:

Now the object will still try to step towards the bottom-right corner of the room, but will avoid the
particular object called obj_monster.

CHANGING A SPRITE BASED ON THE DIRECTION AN OBJECT IS FACING

When more than one image is used to represent an object, it is often important to know what direction

the object is facing. For example, if I am using a sprite that is comprised of four images representing the
four directions the object is facing (up, left, down, right), I will need to constantly change the picture

depending on its direction.

So let’s say I have an object who’s following another object. While following an object, it is very likely the

direction of the object is going to change. For example, sometimes it may be moving right then have to
change directions because the direction of the object it is following has changed.

In order to make this happen, we will need to write our first lines of code using the Execute Code
action included in the control tab.

The first thing we will need to do though is create a Step Event because it is here that we are going to

include a Step Towards action that will instruct the object to follow another object. In this example, I

will be adding a Step Towards action to an object called obj_monster that will step towards an object I
have called obj_hero.

Step Towards and Step Avoiding Actions Page 5 of 7

The Step Towards action requires you to specify the x- any y-position of the object you want it to

follow, the speed at which you want it to move towards that object and whether you not you want it to
stop at only solid objects or all instances of the object. These are the settings I will be using to have the

monster object follow the hero object.

Next we will need to add an Execute Code action where we will write the code required to change the

image based on the direction the image is facing.

In order to make this work, we will need to remember how direction works in GameMaker. When an
object is facing right, the direction is 0. If and object is facing up, the direction is 90. If an object is facing

left, the direction is 180, and if it is facing down, the direction is 270.

Step Towards and Step Avoiding Actions Page 6 of 7

Of course, the problem here with this code is that we’re assuming that the direction will exactly equal one
of these four values (0, 90, 180, or 270). But what if the direction does not exactly any of these values?

What if, for example, the object’s direction is 95? What will happen then? Given the code we have here, it
won’t do anything – the image won’t change. So we need to account for other potential values

representing the object’s direction.

What we’re going to do is set the image based on the following values:

FACE RIGHT If the direction is between 0 and 45 degrees or 315 and 360 degrees.

FACE UP If the direction is between 45 and 120 degrees.
FACE LEFT If the direction is between 120 and 225 degrees.

FACE DOWN If the direction is between 225 and 315 degrees.

Our code will have to be changed in order to have the sprite changed based on these values:

Step Towards and Step Avoiding Actions Page 7 of 7

The above code assumes you are using four different sprites to represent the four different directions the

object is facing. However, you may be using one sprite with four subimages to represent the four
different directions the object is facing. In that case, you would need to change the index of the image

that you want to use and there is a variable we can use to set the index called image_index. You can
set the subimage you want to use by making the image_index equal the subimage number you want to

use.

So your code would look something like this:

